Compound Interest and the TVM Solver - Assignment

1. Use the TVM Solver to calculate the amount (Future Value) of the following investments:
a) $\$ 1000$ invested at 6% per annum compounded semi-annually for 5 years.
b) $\$ 800$ invested at 4.8% per annum compounded semi-annually for 3 years.
c) $\$ 600$ invested at 8% per annum compounded quarterly for 3 years.
d) $\$ 1200$ invested at 6.8% per annum compounded quarterly for 10 years.
e) $\$ 2500$ invested at 12% per annum compounded monthly for 4 years.
f) $\$ 10000$ invested at 5.4% per annum compounded monthly for 8 years.
a) $\quad \mathrm{N}=$
$\mathrm{FV}=$
I =
PV =
PY =
$\mathrm{CY}=$
PMT =
BEGIN
b) $\quad \mathrm{N}=$
$\mathrm{N}=$
$\mathrm{I}=$
$\mathrm{FV}=$
I =
$P Y=$
PV =
CY =
PMT =
BEGIN
d) $\quad \mathrm{N}=$
FV =
PY =
PV =
$\mathrm{CY}=$
$P M T=$
BEGIN
f)

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

e) $\quad \mathrm{N}=$
FV =
PY =
$\mathrm{CY}=$
$\mathrm{PMT}=\quad$ BEGIN
2. Use the TVM Solver to determine the following times. Answer in years.
a) How long will it take an investment of $\$ 1000$ to reach $\$ 1200$ at 6.5% p.a. compounded monthly?
b) How long will it take for an investment of $\$ 5000$ at 5.6% p.a. compounded quarterly to double in value?
c) How long will it take for an investment of $\$ 10000$ at 9.5% p.a. compounded semi-annually to triple in value?
d) How long will it take for an investment of $\$ 3000$ at 8.2% p.a. compounded annually to reach $\$ 5000$?
a) $\quad \mathrm{N}=$
$\mathrm{FV}=$
I =
PV =
PY =
$\mathrm{CY}=$
PMT =
BEGIN
b)
$N=$
$\mathrm{FV}=$
I =
PY =
PV =
CY =
PMT =
BEGIN
c) $\quad \mathrm{N}=$
$\mathrm{FV}=$
PY =
PV =
PMT =
BEGIN
d)
$N=$
$\mathrm{FV}=$
PY =
PV =
PMT =
CY =
BEGIN
3. Use the TVM Solver to determine the original amount (Present Value) invested.
a) How much must be invested at 3.5% p.a. compounded semi-annually in order to have $\$ 5000$ after 8 years?
b) How much must be invested at 4.1% p.a. compounded bi-weekly in order to have $\$ 2000$ after 3 years?
a)
$\mathrm{FV}=$
I =
PY =
$\mathrm{PV}=\quad \mathrm{CY}=$
PMT = BEGIN
b) $\quad \mathrm{N}=$
I =
FV =
PV
PY =
PV =
$\mathrm{CY}=$
PMT =
BEGIN

[^0]
[^0]: Answers: \quad 1. a) $\$ 1343.92$ b) $\$ 922.34$ c) $\$ 760.95$ d) $\$ 2355.15$ e) $\$ 4030.57$ f) $\$ 15388.43$
 $\begin{array}{lll}\text { 2. a) } 2.8 \mathrm{yrs} & \text { b) } 12.46 \mathrm{yrs} & \text { c) } 11.84 \mathrm{yrs} \text { d) } 6.48 \mathrm{yrs}\end{array}$
 3. a) $\$ 3788.08$ b) 1768.70

