8.1

1. Determine the value of each trigonometric ratio. Use exact values where possible; otherwise write the value to the nearest thousandth.

2. To the nearest degree, determine all possible values of θ for which $\cos \theta = 0.76$, when $-360^{\circ} \le \theta \le 360^{\circ}$.

Since $\cos \theta$ is positive, the terminal arm of angle θ lies in Quadrant 1 or 4. The reference angle is: $\cos^{-1}(0.76) \doteq 41^{\circ}$ For the domain $0^{\circ} \le \theta \le 360^{\circ}$: In Quadrant 1, $\theta \doteq 41^{\circ}$ In Quadrant 4, $\theta \doteq 360^{\circ} - 41^{\circ}$, or approximately 319° For the domain $-360^{\circ} \le \theta \le 0^{\circ}$: In Quadrant 1, $\theta \doteq -360^{\circ} + 41^{\circ}$, or approximately -319° In Quadrant 4, $\theta \doteq -41^{\circ}$

8.2

3. As a fraction of π , determine the length of the arc that subtends a central angle of 225° in a circle with radius 3 units.

Arc length: $\frac{225}{360}(2\pi)(3) = \frac{15}{4}\pi$

8.3

4. a) Convert each angle to degrees. Give the answer to the nearest degree where necessary.

b) Convert each angle to radians.

5. In a circle with radius 5 cm, an arc of length 6 cm subtends a central angle. What is the measure of this angle in radians, and to the nearest degree?

Angle measure is:
$$\frac{\text{arc length}}{\text{radius}} = \frac{6}{5}$$

= 1.2
In degrees, $1.2 = 1.2 \left(\frac{180^\circ}{\pi}\right)$
 $\doteq 69^\circ$

The angle measure is 1.2 radians or approximately 69°.

RM, US **6.** A race car is travelling around a circular track at an average speed of 120 km/h. The track has a radius of 1 km. Visualize a line segment joining the race car to the centre of the track. Through what angle, in radians, will the segment have rotated in 10 s?

In 1 s, the car travels:
$$\frac{120}{60 \cdot 60}$$
 km = $\frac{1}{30}$ km
So, in 10 s, the car travels: $\frac{10}{30}$ km = $\frac{1}{3}$ km
Angle measure is: $\frac{\text{arc length}}{\text{radius}} = \frac{\frac{1}{3}}{\frac{1}{3}}$
= $\frac{1}{3}$

In 10 s, the segment will have rotated through an angle of $\frac{1}{3}$ radian.

7. Determine the value of each trigonometric ratio. Use exact values where possible; otherwise write the value to the nearest thousandth.

- **8.** P(3, -1) is a terminal point of angle θ in standard position.
 - a) Determine the exact values of all the trigonometric ratios for θ .

Let the distance between the origin and P be r.
Use:
$$x^2 + y^2 = r^2$$
 Substitute: $x = 3$, $y = -1$
 $9 + 1 = r^2$
 $r = \sqrt{10}$
 $\sin \theta = -\frac{1}{\sqrt{10}}$ $\csc \theta = -\sqrt{10}$ $\cos \theta = \frac{3}{\sqrt{10}}$
 $\sec \theta = \frac{\sqrt{10}}{3}$ $\tan \theta = -\frac{1}{3}$ $\cot \theta = -3$

b) To the nearest tenth of a radian, determine possible values of θ in the domain $-2\pi \le \theta \le 2\pi$.

```
The terminal arm of angle \theta lies in Quadrant 4.

The reference angle is: \tan^{-1}\left(\frac{1}{3}\right) = 0.3217...

So, \theta = -0.3217...

The angle between 0 and 2\pi that is coterminal with -0.3217... is:

2\pi - 0.3217... = 5.9614...

Possible values of \theta are approximately: 6.0 and -0.3
```

8.4

9. Use graphing technology to graph each function below for -2π ≤ x ≤ 2π, then list these characteristics of the graph: amplitude, period, zeros, domain, range, and the equations of the asymptotes.

a) $\gamma = \sin x$

The amplitude is 1. The period is 2π . The zeros are 0, $\pm \pi$, $\pm 2\pi$. The domain is $-2\pi \le x \le 2\pi$. The range is $-1 \le y \le 1$. There are no asymptotes.

b) $\gamma = \cos x$

The amplitude is 1. The period is 2π . The zeros are $\pm \frac{\pi}{2}$, $\pm \frac{3\pi}{2}$. The domain is $-2\pi \le x \le 2\pi$. The range is $-1 \le y \le 1$. There are no asymptotes.

c) $\gamma = \tan x$

There is no amplitude. The period is π . The zeros are 0, $\pm \pi$, $\pm 2\pi$. The domain is $x \neq \pm \frac{\pi}{2}$, $\pm \frac{3\pi}{2}$. The range is $y \in \mathbb{R}$. The equations of the asymptotes are $x = \pm \frac{\pi}{2}$ and $x = \pm \frac{3\pi}{2}$.

8.5

On the same grid, sketch graphs of the functions in each pair for 0 ≤ x ≤ 2π, then describe your strategy.

For the graph of $y = \sin x$, I used the completed table of values from Lesson 8.4.

The horizontal scale is 1 square to $\frac{\pi}{4}$ units, because the phase shift is $\frac{\pi}{4}$. I then shifted several points $\frac{\pi}{4}$ units right and joined the points to get the graph of $y = \sin\left(x - \frac{\pi}{4}\right)$.

For the graph of $y = \cos x$, I used the completed table of values from Lesson 8.4.

Х

I multiplied every *y*-coordinate by 1.5, plotted the new points, then joined them to get the graph of $y = \frac{3}{2}\cos x$.

1

Sample response: I graphed $y = \frac{1}{2} \sin 3x$, shifted several points $\frac{\pi}{6}$ units left and 2 units up, then joined the points to get the graph of

$$y = \frac{1}{2}\sin 3\left(x + \frac{\pi}{6}\right) + 2.$$

b) List the characteristics of the graph you drew.

The amplitude is $\frac{1}{2}$. The period is $\frac{2\pi}{3}$. There are no zeros. The domain is $-2\pi \le x \le 2\pi$. The range is $\frac{3}{2} \le y \le \frac{5}{2}$.

12. An equation of the function shown in the graph has the form $\gamma = a \cos b(x - c) + d$. Identify the values of *a*, *b*, *c*, and *d* in the equation, then write an equation for the function.

Sample response: The equation of the centre line is $y = \frac{1}{2}$, so the vertical translation is $\frac{1}{2}$ unit up and $d = \frac{1}{2}$. The amplitude is: $\frac{3 - (-2)}{2} = \frac{5}{2}$, so $a = \frac{5}{2}$ Choose the *x*-coordinates of two adjacent maximum points, $-\frac{\pi}{3}$ and $\frac{11\pi}{3}$. The period is: $\frac{11\pi}{3} - (-\frac{\pi}{3}) = 4\pi$ So, *b* is: $\frac{2\pi}{4\pi} = \frac{1}{2}$ To the left of the *y*-axis, the cosine function begins its cycle at $x = -\frac{\pi}{3}$, so a possible phase shift is $-\frac{\pi}{3}$, and $c = -\frac{\pi}{3}$. Substitute for *a*, *b*, *c*, and *d* in: $y = a \cos b(x - c) + d$ An equation is: $y = \frac{5}{2} \cos \frac{1}{2} \left(x + \frac{\pi}{3}\right) + \frac{1}{2}$

RM, US, **CR1**, CR2 **13.** A water wheel has diameter 10 m and completes 4 revolutions each minute. The axle of the wheel is 8 m above a river.

> **a)** The wheel is at rest at time t = 0 s, with point P at the lowest point on the wheel. Determine a function that 8 mmodels the height of P above the river, *h* metres, at any time *t* seconds. Explain how the characteristics of the graph relate to the given information.

The time for 1 revolution is 15 s.
At
$$t = 0, h = 3$$

At $t = 7.5, h = 13$
 h
(7.5, 13)

The graph begins at (0, 3), which is a minimum point. The first maximum point is at (7.5, 13). The next minimum point is after 1 cycle and it has coordinates (15, 3). The position of the first maximum is known, so use a cosine function: $h(t) = a \cos b(t - c) + d$ The constant in the equation of the centre line of the graph is the height of the axle above the river, so its equation is: h = 8; and this is also the vertical translation, so d = 8The amplitude is one-half the diameter of the wheel, so a = 5The period is the time for 1 revolution, so $b = \frac{2\pi}{15}$ A possible phase shift is: c = 7.58

A function is:
$$h(t) = 5 \cos \frac{2\pi}{15}(t - 7.5) + 8$$

- **b)** Use technology to graph the function. Use this graph to determine:
 - i) the height of P after 35 s

Graph: $y = 5 \cos \frac{2\pi}{15}(x - 7.5) + 8$ Determine the *y*-value when x = 35. After 35 s, P is 10.5 m high.

ii) the times, to the nearest tenth of a second, in the first 15 s of motion that P is 11 m above the river

Graph: $y = 5 \cos \frac{2\pi}{15}(x - 7.5) + 8$ and y = 11Determine the y-coordinates of the first two points of intersection. P is 11 m above the river after approximately 5.3 s and 9.7 s.