REVIEW, pages 608-614

8.1

1. Determine the value of each trigonometric ratio. Use exact values where possible; otherwise write the value to the nearest thousandth.
a) $\begin{aligned} & \tan \left(-45^{\circ}\right) \\ &=-1\end{aligned}$
b) $\cos 600^{\circ}$
$=\cos 240^{\circ}$

$$
=-\frac{1}{2}
$$

c) $\sec \left(-210^{\circ}\right)$
$=\frac{1}{\cos \left(-210^{\circ}\right)}$

$$
=\frac{1}{\cos 150^{\circ}}
$$

$$
=-\frac{2}{\sqrt{3}}
$$

e) $\sin 765^{\circ}$

$$
\begin{aligned}
& =\sin 45^{\circ} \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

f) $\cot 21^{\circ}$
$=\frac{1}{\tan 21^{\circ}}$
$\doteq 2.605$
g) $\csc 318^{\circ}$

$$
=\frac{1}{\sin 318^{\circ}}
$$

$$
\doteq-1.494
$$

h) $\cot 510^{\circ}$

$$
\begin{aligned}
& =\frac{1}{\tan 510^{\circ}} \\
& =\frac{1}{\tan 150^{\circ}} \\
& =-\sqrt{3}
\end{aligned}
$$

2. To the nearest degree, determine all possible values of θ for which $\cos \theta=0.76$, when $-360^{\circ} \leq \theta \leq 360^{\circ}$.

Since $\cos \boldsymbol{\theta}$ is positive, the terminal arm of angle $\boldsymbol{\theta}$ lies in Quadrant 1 or 4.
The reference angle is: $\cos ^{-1}(0.76) \doteq 41^{\circ}$
For the domain $0^{\circ} \leq \boldsymbol{\theta} \leq 360^{\circ}$:
In Quadrant $1, \boldsymbol{\theta} \doteq 41^{\circ}$
In Quadrant 4, $\theta \doteq 360^{\circ}-41^{\circ}$, or approximately 319°
For the domain $-360^{\circ} \leq \boldsymbol{\theta} \leq 0^{\circ}$:
In Quadrant 1, $\boldsymbol{\theta} \doteq-360^{\circ}+41^{\circ}$, or approximately -319°
In Quadrant 4, $\theta \doteq-41^{\circ}$

8.2

3. As a fraction of π, determine the length of the arc that subtends a central angle of 225° in a circle with radius 3 units.

Arc length: $\frac{225}{360}(2 \pi)(3)=\frac{15}{4} \pi$
8.3
4. a) Convert each angle to degrees. Give the answer to the nearest degree where necessary.
i) $\frac{5 \pi}{3}$
ii) $-\frac{10 \pi}{7}$
iii) 4
$=-\frac{10\left(180^{\circ}\right)}{7}$
$=4\left(\frac{180^{\circ}}{\pi}\right)$
$=\frac{5\left(180^{\circ}\right)}{3}$
$\doteq-257^{\circ}$
$\doteq 229^{\circ}$
iv) $\frac{40}{\pi}$
$=\left(\frac{40}{\pi}\right)\left(\frac{180^{\circ}}{\pi}\right)$
$\doteq 730^{\circ}$
b) Convert each angle to radians.
i) 150°
$=150\left(\frac{\pi}{180}\right)$
$=\frac{5 \pi}{6}$
ii) -240°
$=-240\left(\frac{\pi}{180}\right)$
$=-\frac{4 \pi}{3}$
iii) 485°
$=485\left(\frac{\pi}{180}\right)$
$=\frac{97 \pi}{36}$
iv) -220°
$=-220\left(\frac{\pi}{180}\right)$
$=-\frac{11 \pi}{9}$
5. In a circle with radius 5 cm , an arc of length 6 cm subtends a central angle. What is the measure of this angle in radians, and to the nearest degree?
Angle measure is: $\frac{\text { arc length }}{\text { radius }}=\frac{6}{5}$

$$
=1.2
$$

In degrees, $1.2=1.2\left(\frac{180^{\circ}}{\pi}\right)$

$$
\doteq 69^{\circ}
$$

The angle measure is 1.2 radians or approximately 69°.

RM, 6. A race car is travelling around a circular track at an average speed of
joining the race car to the centre of the track. Through what angle, in radians, will the segment have rotated in 10 s ?
In 1 s , the car travels: $\frac{120}{60 \cdot 60} \mathrm{~km}=\frac{1}{30} \mathrm{~km}$
So, in 10 s , the car travels: $\frac{10}{30} \mathrm{~km}=\frac{1}{3} \mathrm{~km}$
Angle measure is: $\frac{\text { arc length }}{\text { radius }}=\frac{\frac{1}{3}}{1}$

$$
=\frac{1}{3}
$$

In 10 s , the segment will have rotated through an angle of $\frac{1}{3}$ radian.
7. Determine the value of each trigonometric ratio. Use exact values where possible; otherwise write the value to the nearest thousandth.
a) $\sin \frac{\pi}{3}$
b) $\cos \frac{5 \pi}{6}$
c) $\sec \left(-\frac{\pi}{2}\right)$
$=\frac{1}{\cos \left(-\frac{\pi}{2}\right)}$,
which is undefined

$$
\text { e) } \begin{aligned}
& \tan \frac{15 \pi}{4} \\
= & \tan \frac{3 \pi}{4} \\
= & -1
\end{aligned}
$$

f) $\csc 5$
g) $\cot (-22.8)$

$$
\begin{aligned}
& =\frac{1}{\tan (-22.8)} \\
& \doteq-0.954
\end{aligned}
$$

d) $\sec \left(\frac{25 \pi}{12}\right)$
$=\frac{1}{\cos \left(\frac{25 \pi}{12}\right)}$
$\doteq 1.035$
$=\frac{1}{\sin 5}$

$$
\doteq-1.043
$$

$\doteq-1.043$
h) $\begin{aligned} & \tan (-3 \pi) \\ &= \tan (-\pi) \\ &= 0\end{aligned}$
8. $\mathrm{P}(3,-1)$ is a terminal point of angle θ in standard position.
a) Determine the exact values of all the trigonometric ratios for θ.

Let the distance between the origin and P be r.

$$
\begin{aligned}
\text { Use: } \begin{aligned}
x^{2}+y^{2} & =r^{2} & \text { Substitute: } x=3, y=-1 \\
9+1 & =r^{2} & \\
r & =\sqrt{10} & \\
\sin \theta=-\frac{1}{\sqrt{10}} & \csc \theta=-\sqrt{10} & \cos \theta=\frac{3}{\sqrt{10}} \\
\sec \theta=\frac{\sqrt{10}}{3} & \tan \theta=-\frac{1}{3} & \cot \theta=-3
\end{aligned}
\end{aligned}
$$

b) To the nearest tenth of a radian, determine possible values of θ in the domain $-2 \pi \leq \theta \leq 2 \pi$.

The terminal arm of angle $\boldsymbol{\theta}$ lies in Quadrant 4.
The reference angle is: $\tan ^{-1}\left(\frac{1}{3}\right)=0.3217 \ldots$
So, $\theta=-0.3217$. . .
The angle between 0 and 2π that is coterminal with $-0.3217 \ldots$ is:
$2 \pi-0.3217 . \ldots=5.9614 .$.
Possible values of $\boldsymbol{\theta}$ are approximately: 6.0 and -0.3
8.4
9. Use graphing technology to graph each function below for $-2 \pi \leq x \leq 2 \pi$, then list these characteristics of the graph: amplitude, period, zeros, domain, range, and the equations of the asymptotes.
a) $y=\sin x$

The amplitude is 1 . The period is 2π. The zeros are $0, \pm \pi, \pm 2 \pi$.
The domain is $-2 \pi \leq x \leq 2 \pi$. The range is $-1 \leq y \leq 1$.
There are no asymptotes.
b) $y=\cos x$

The amplitude is 1 . The period is 2π. The zeros are $\pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}$.
The domain is $-2 \pi \leq x \leq 2 \pi$. The range is $-1 \leq y \leq 1$.
There are no asymptotes.
c) $y=\tan x$

There is no amplitude. The period is π. The zeros are $0, \pm \pi, \pm 2 \pi$.
The domain is $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}$. The range is $y \in \mathbb{R}$.
The equations of the asymptotes are $x= \pm \frac{\pi}{2}$ and $x= \pm \frac{3 \pi}{2}$.

8.5

10. On the same grid, sketch graphs of the functions in each pair for $0 \leq x \leq 2 \pi$, then describe your strategy.
a) $y=\sin x$ and $y=\sin \left(x-\frac{\pi}{4}\right)$

For the graph of $y=\sin x$, I used the completed table of values from Lesson 8.4.
The horizontal scale is 1 square to $\frac{\pi}{4}$ units, because the phase shift is $\frac{\pi}{4}$. I then shifted several points $\frac{\pi}{4}$ units right and joined the points to get the graph of $y=\sin \left(x-\frac{\pi}{4}\right)$.
b) $y=\cos x$ and $y=\frac{3}{2} \cos x$

For the graph of $y=\cos x$, I used the completed table of values from Lesson 8.4.
I multiplied every y-coordinate by 1.5, plotted the new points, then joined them to get the graph of $y=\frac{3}{2} \cos x$.

8.6

11. a) Graph $y=\frac{1}{2} \sin 3\left(x+\frac{\pi}{6}\right)+2$ for $-2 \pi \leq x \leq 2 \pi$.

Explain your strategy.

Sample response: I graphed $y=\frac{1}{2} \sin 3 x$, shifted several points $\frac{\pi}{6}$ units left and 2 units up, then joined the points to get the graph of $y=\frac{1}{2} \sin 3\left(x+\frac{\pi}{6}\right)+2$.
b) List the characteristics of the graph you drew.

The amplitude is $\frac{1}{2}$. The period is $\frac{2 \pi}{3}$. There are no zeros.
The domain is $-2 \pi \leq x \leq 2 \pi$. The range is $\frac{3}{2} \leq y \leq \frac{5}{2}$.
12. An equation of the function shown in the graph has the form $y=a \cos b(x-c)+d$. Identify the values of a, b, c, and d in the equation, then write an equation for the function.

Sample response: The equation of the centre line is $y=\frac{1}{2}$, so the vertical translation is $\frac{1}{2}$ unit up and $d=\frac{1}{2}$.
The amplitude is: $\frac{3-(-2)}{2}=\frac{5}{2}$, so $a=\frac{5}{2}$
Choose the x-coordinates of two adjacent maximum points,

$-\frac{\pi}{3}$ and $\frac{11 \pi}{3}$. The period is: $\frac{11 \pi}{3}-\left(-\frac{\pi}{3}\right)=4 \pi$
So, b is: $\frac{2 \pi}{4 \pi}=\frac{1}{2}$
To the left of the y-axis, the cosine function begins its cycle at $x=-\frac{\pi}{3}$, so a possible phase shift is $-\frac{\pi}{3}$, and $c=-\frac{\pi}{3}$.
Substitute for a, b, c, and d in: $y=a \cos b(x-c)+d$
An equation is: $y=\frac{5}{2} \cos \frac{1}{2}\left(x+\frac{\pi}{3}\right)+\frac{1}{2}$

8.7

13. A water wheel has diameter 10 m and completes 4 revolutions each minute. The axle of the wheel is 8 m above a river.
a) The wheel is at rest at time $t=0 \mathrm{~s}$, with point P at the lowest point on the wheel. Determine a function that models the height of P above the river, h metres, at any time t seconds. Explain how the characteristics of
 the graph relate to the given information.

The time for 1 revolution is 15 s .
At $t=0, h=3$
At $t=7.5, h=13$

The graph begins at $(0,3)$, which is a minimum point.
The first maximum point is at $(7.5,13)$.
The next minimum point is after 1 cycle and it has coordinates $(15,3)$.
The position of the first maximum is known, so use a cosine function:
$h(t)=a \cos b(t-c)+d$
The constant in the equation of the centre line of the graph is the height of the axle above the river, so its equation is: $h=8$; and this is also the vertical translation, so $d=8$
The amplitude is one-half the diameter of the wheel, so $a=5$
The period is the time for 1 revolution, so $b=\frac{2 \pi}{15}$
A possible phase shift is: $c=7.5$
A function is: $h(t)=5 \cos \frac{2 \pi}{15}(t-7.5)+8$
b) Use technology to graph the function. Use this graph to determine:
i) the height of P after 35 s

Graph: $y=5 \cos \frac{2 \pi}{15}(x-7.5)+8$
Determine the y-value when $x=35$.
After $35 \mathrm{~s}, \mathrm{P}$ is 10.5 m high.
ii) the times, to the nearest tenth of a second, in the first 15 s of motion that P is 11 m above the river

Graph: $y=5 \cos \frac{2 \pi}{15}(x-7.5)+8$ and $y=11$
Determine the y-coordinates of the first two points of intersection. P is 11 m above the river after approximately 5.3 s and 9.7 s .

