\qquad
A1. Write $\log _{a}(b+2)=c$ in exponential form.
A2. Write $y-1=3^{x+2}$ in logarithmic form.
B1. Evaluate: $\log _{\sqrt{5}} 125$

B2. Evaluate: $2 \log _{4} 16+\frac{1}{3} \log _{2}\left(\frac{1}{8}\right)$
C. Use benchmarks to estimate the value of $\log _{2} 60$.

D1. Write $3 \log a+\frac{1}{2} \log b-\frac{1}{4} \log c$ as a single logarithm.

D2. Evaluate $\log _{3} \sqrt{54}-\log _{3} \sqrt{6}$.

D3. Write $\log \left(\frac{a^{2}}{b c^{3}}\right)$ in terms of $\log a, \log b$, and/or $\log c$.

D4. If $\log _{3} x=2$ and $\log _{3} y=5$, evaluate $\log _{3}\left(\frac{3 x^{2}}{y}\right)$.
E. Evaluate to 3 decimal places: $\log _{4} 75$.
F. Sketch the graph of $y=\log _{2}(x+2)+1$.

G. Determine the domain, range, equation of the asymptote, and intercepts of the graph in F.

H1. Solve for x to 3 decimal places: $5^{x-3}=2^{x+1}$.
$H 2$. Solve for x to 3 decimal places: $2^{x}=3\left(4^{x+1}\right)$.
11. Solve for $x: \log (x+11)+\log x=\log (x+1)+\log 6$.
12. Solve for $x: \log _{2}(x+2)+\log _{2} x=3$.

J1. You invest \$5000 in an account with a fixed interest rate of 3\%/annum, compounded semiannually. How long will it take for the investment to double?

J2. Parents plan to invest money for their newborn son so that he has $\$ 20000$ available for his education on his $18^{\text {th }}$ birthday. Assuming a growth rate of 6% per year, compounded monthly, how much will they need to invest today?

J3. A radioactive isotope has a half-life of approximately 12 weeks. How much of a sample of 30 grams would remain after 50 weeks? (Round to the nearest hundredth of a gram)

K1. How many times as intense as a 6.3 magnitude earthquake is an 8.4 magnitude earthquake?

K2. How many times louder is a referee's whistle (125 dB) than a flute (89 dB)?

K3. Tomato juice has a pH level of 4.0 Determine the pH level of a solution that is 5 times more acidic.

L1. L1. Use natural logarithms to solve the exponential equation $5 \mathrm{e}^{x-2}=120$ to 3 decimal places:

L2. Solve the following equation: $\ln (x+3)+\ln 3=\ln \left(x^{2}-1\right)$

Answers:

