Ch. 6 Review

- 1. Sketch the graph of each function and state the characteristics. (types A, B, C)
 - a) $y = -x^3 + 2x + 2$ Type: ______ Degree: ______ Number of x-intercepts: ______ The y-intercept: ______ The End Behavior: ______ Domain: ______ Range: _____ Number of Turning Points: _____

b) $y = x^2 + 2x - 6$

Туре:
Degree:
Number of x-intercepts:
The y-intercept:
The End Behavior:
Domain:
Range:
Number of Turning Points:

c) y = -x - 1

Туре:
Degree:
Number of x-intercepts:
The y-intercept:
The End Behavior:
Domain:
Range:
Number of Turning Points:

d)
$$y = x^3 - 2x^2 + 3x + 1$$

Туре:
Degree:
Number of x-intercepts:
The y-intercept:
The End Behavior:
Domain:
Range:
Number of Turning Points:

- 2. Sketch the graph of a polynomial function that satisfies each set of characteristics: (type D)
 - a) Extending from quadrant III to quadrant I, y-intercept of -6, degree 1.
 - b) Extending from quadrant II to IV, two turning points, y-intercept of -3.
 - c) Extending from quadrant III to quadrant IV, degree 2, y-intercept of -4.

- 3. Write an equation of a polynomial function that satisfies each set of characteristics above. (type E)
 - a) _____ b) _____ c) ____
- 4. Toby recorded the following odometer measurements during a single trip in his car:

Distance	2	5	8	10	11	15	20	30	33
(km)									
Time	2	6	10	13	14	19	23	35	40
(min)									

- a) Create a scatter plot for data and determine the equation of the linear regression function. (type F)
- b) What was the time it took for Toby to travel 25km? (type G)
- c) What is possible distance he travelled in 45 minutes? (type G)

5. A spherical balloon is being inflated. The surface area, A, in square meters, is related to the time, t, in minutes.

Time (t)	0	1	2	3	4
Surface Area	13	28	50	79	113

- a) Create a scatter plot for the data and determine the quadratic regression function that models the data. (type F)
- b) Use your function to interpolate x = 2.5. (type G)
- c) Use your function to extrapolate x = 5 (type G)
- 6. A golf club manufacturer recorded the path of a golf ball from tee to green on a par 3 hole. The data shows the height, h meters, of the golf ball above the ground after t seconds.

Time (s)	0	0.7	1.4	2.1	2.8	3.5	4.2	4.9
Height (m)	0.03	15.13	25.43	30.92	31.61	27.50	18.59	4.88

- a) Create a scatterplot and determine which function best models the data. Find the line or curve of best fit accordingly. (type F)
- b) Determine the height of the ball after 3 seconds. (type G)
- c) Determine the maximum height of the ball above the ground. (type G)
- d) Determine how long it takes for the ball to hit the ground. (type G)

MORE PRACTICE:

Types A – C : p. 427 # 1, 2, 3, 4 (use Question #1 above as a guide)

Type D: p. 424 # 3

Type E: Sketch a possible graph of p. 424 # 3

Type F & G: p. 427 # 6, 8, 10