\qquad

1. Suppose that at the beginning of the season the odds in favour of the Canucks winning the Stanley Cup are estimated to be 1:99.
a) Estimate the probability that the Canucks will win the Stanley Cup.
b) Estimate the odds against the Canucks winning the Stanley Cup.
2. A bag of marbles contains 2 red marbles, 3 blue marbles and 5 green marbles.
a) What is the probability of choosing a green marble?
b) What are the odds in favour of choosing a blue marble?
c) What are the odds against choosing a red marble?
3. Alex, Brian and Cole are running in a 10 person race. Determine the probability that they will come in $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ place, respectively.
4. In the game of Crazy Eights, each player is dealt 8 cards from a well-shuffled standard deck of 52 playing cards. Determine the probability that a player is dealt:
a) all hearts.
b) all the aces.
5. Mark surveyed 100 people at the local Tim Horton's. 70 people ordered coffee (C), 40 people ordered a doughnut (D), and 10 people ordered something else.
a) Draw a Venn diagram of these sets.

b) Determine the following:
i) $n(C)=$
iii) $n(C \cap D)=$
v) $n(D \backslash C)=$
ii) $n(D)=$
iv) $n(C \cup D)=$
vi) $n(C \backslash D)=$
6. Jamal asked 50 people what type of television shows they like. 15 people like comedy shows, but not drama shows. 10 people like drama shows, but not comedy shows. 5 people liked neither type of show.
a) Draw a Venn diagram of these sets.

b) What is the probability that a randomly selected person liked both types of shows?
7. Which of the following are mutually exclusive events?
a) Rolling a double or rolling a sum of 4 when rolling two dice.
b) Rolling a sum of 3 or a sum of 4 when rolling two dice.
c) Drawing a red card or a spade from a standard deck of 52 playing cards.
d) Drawing a black card or a spade from a standard deck of 52 playing cards.
8. Enzo rolls two standard dice. Determine the probability of each event.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$\mathbf{2}$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$\mathbf{3}$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$\mathbf{4}$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$\mathbf{5}$	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$\mathbf{6}$	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

a) Rolling a double or rolling a sum of 4 .
b) Rolling a sum of 3 or a sum of 4 .
c) Rolling a sum less than 3 or a sum greater than 10 .
d) Rolling a 5 or rolling a sum greater than 8 .
9. You draw a card at random from a standard deck of 52 playing cards. Determine the probability that you will draw:
a) A red card or a spade.
b) A black card or a spade.
c) A face card or a heart.
d) An ace or a king.

6b) $\frac{2}{5} \quad$ 7) B and C
8a) $\frac{2}{9}$
8b) $\frac{5}{36}$
8c) $\frac{1}{9}$
8d) $\frac{4}{9}$
9a) $\frac{3}{4}$ 9b) $\frac{1}{2}$
9c) $\frac{11}{26}$
9d) $\frac{2}{13}$

