\qquad

1. Chelsea is planning on making me a necklace. She has 3 colours of beads (purple, turquoise and yellow), 3 shapes of each (circle, heart and star) and 2 colours of string (black and white). Draw a tree diagram and determine the number of necklace combinations she could make.
2. License plates are created so that the first 3 characters have to be a letter and the last 3 characters have to be a digit (0-9). You can not use the letters O or I .
a) How many license plates are possible?
b) Suppose each character can be used only once. How many possibilities are there?
3. There are 10 toppings available at a Sundae ice cream bar. How many ways can you choose 3 toppings?
4. Ten students apply for student council. How many possible ways are there for the president, vice-president and secretary to be chosen?
5. How many permutations are there of all the letters in BANANA?
6. How many different ways are there to move from point A to point B if you can only move east and south?

A

7. Simplify the following expressions.
a) $\frac{9!}{6!}$
b) $\frac{(n+5)!}{(n+3)!}$
8. Solve for $n: \frac{(n-2)!}{(n-3)!}=5$
9. A muffin shop offers 11 varieties of muffins. Suppose a customer orders half a dozen assorted muffins. How many different combinations are there?
10. A volleyball team has 12 members.
a) In how many ways can the coach choose the starting 6 players?
b) In how many ways can the coach position the 6 starting players?
11. From a deck of 52 cards, how many different 5 -card hands can be formed in each case?
a) with exactly 3 Kings
b) with fewer than 3 Kings
c) with more than 3 Kings
12. A committee of 4 people is to be chosen from a group of 10 people- 6 men and 4 women. In how many ways can the committee be chosen so as to include
a) exactly $\mathbf{3}$ women?
b) at most 2 men?

