\qquad

Ch. 1 Review

A1. Millie invests $\$ 2350$ at 7% per year simple interest. Calculate the value of the investment after 5 years.

C1. Calculate the rate of return on Millie's investment.

A2. 8 years ago Julian invested $\$ 25000$ at 2.3% per annum simple interest. How much is his investment worth today?

B1. 10 years ago Raina bought a GIC that earned 4.5% per year simple interest. It is now worth $\$ 20000$. How much was the GIC originally bought for?

B2. Billy invested $\$ 3500$ in a GIC that earns 5% per year simple interest. The GIC is now worth $\$ 5000$. For how many years was the money invested?

C2. Calculate the rate of return on Billy's investment.

D1. Danielle invests $\$ 2800$ at 3.5% p.a. compounded annually for 4 years. Calculate the value of the investment.

E1. Determine the total interest earned on Danielle's investment.

F1. How long would it take for Danielle's investment to double in value? (Hint: use the rule of 72!)

D2. Sam invests $\$ 3000$ for 10 years. Compare the following by calculating the value of the investments:
a) 6% p.a. compounded semi-annually
b) 6% p.a. compounded quarterly
c) 6% p.a. compounded monthly

E2. Determine the total amount of interest earned for each of the questions in D2.

G1. Manuel would like to make an investment so that he'll have $\$ 9000$ in 5 years. The bank offers a rate of 2.5\% p.a. compounded annually. How much should he invest?

G2. Helen wants to invest some money so that her grandson Tim will have $\$ 25000$ for college in 18 years. The bank offers a rate of 4.2% p.a. compounded semi-annually. How much should she invest?

H1. Sally invests $\$ 2000$ at 2.7% p.a. compounded monthly for 6 years. Use the TVM solver to determine the future value of her investment.

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

H2. Sally wants her $\$ 2000$ investment to grow to $\$ 3000$ in those 6 years. What interest rate will she need?

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

H3. Becky invests $\$ 5000$ at 3.2% p.a. compounded quarterly. She needs $\$ 8000$ to buy a used car. How long will it take until she has enough money to purchase the car?

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

I1. Tony deposited $\$ 275$ per month for 2 years. If the account pays 1.75% p.a. compounded quarterly, how much will he have?

```
N= FV =
I= PY =
PV = CY =
PMT = BEGIN
```

12. Nicole invests $\$ 3000$ per year at 7.2% p.a. compounded semi-annually. How much will she have in 3 years?

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

13. Samuel deposited a certain amount into his account every month. How much should he invest each month at 5\% p.a. compounded annually in order to have \$10 000 in 4 years?

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

J1. Gabriel invested $\$ 7500$ in a GIC for a 3 year term at 3.6% p.a. compounded semi-annually. At the end of the term, he transferred the money into a savings account that paid 2.4% p.a. compounded monthly. During the time, he was also making regular monthly payments of $\$ 250$ into a savings account that earned 3% p.a. compounded semi-annually. What was the total value of his investment after 5 years?

$\mathrm{N}=$	$\mathrm{N}=$	$\mathrm{N}=$
$\mathrm{I}=$	$\mathrm{I}=$	$\mathrm{I}=$
$\mathrm{PV}=$	$\mathrm{PV}=$	$\mathrm{PV}=$
$\mathrm{PMT}=$	$\mathrm{PMT}=$	$\mathrm{PMT}=$
$\mathrm{FV}=$	$\mathrm{FV}=$	$\mathrm{FV}=$
$\mathrm{P} / \mathrm{Y}=$	$\mathrm{P} / \mathrm{Y}=$	$\mathrm{P} / \mathrm{Y}=$
$\mathrm{C} / \mathrm{Y}=$	$\mathrm{C} / \mathrm{Y}=$	$\mathrm{C} / \mathrm{Y}=$
BEGIN	BEGIN	BEGIN

Total: \qquad Total: \qquad Total: \qquad
\qquad

