Name:

Ch. 1 Review

A1. Millie invests \$2350 at 7% per year simple interest. Calculate the value of the investment after 5 years.

C1. Calculate the rate of return on Millie's investment.

A2. 8 years ago Julian invested \$25 000 at 2.3% per annum simple interest. How much is his investment worth today?

B1. 10 years ago Raina bought a GIC that earned 4.5% per year simple interest. It is now worth \$20 000. How much was the GIC originally bought for?

B2. Billy invested \$3500 in a GIC that earns 5% per year simple interest. The GIC is now worth \$5000. For how many years was the money invested?

C2. Calculate the rate of return on Billy's investment.

D1. Danielle invests \$2800 at 3.5% p.a. compounded annually for 4 years. Calculate the value of the investment.

E1. Determine the total interest earned on Danielle's investment.

- F1. How long would it take for Danielle's investment to double in value? (Hint: use the rule of 72!)
- D2. Sam invests \$3000 for 10 years. Compare the following by calculating the value of the investments:
 - a) 6% p.a. compounded semi-annually
 - b) 6% p.a. compounded quarterly
 - c) 6% p.a. compounded monthly
- E2. Determine the total amount of interest earned for each of the questions in D2.

G1. Manuel would like to make an investment so that he'll have \$9000 in 5 years. The bank offers a rate of 2.5% p.a. compounded annually. How much should he invest?

G2. Helen wants to invest some money so that her grandson Tim will have \$25 000 for college in 18 years. The bank offers a rate of 4.2% p.a. compounded semi-annually. How much should she invest?

H1. Sally invests \$2000 at 2.7% p.a. compounded monthly for 6 years. Use the TVM solver to determine the future value of her investment.

N =	FV =
=	PY =
PV =	CY =
PMT =	BEGIN

H2. Sally wants her \$2000 investment to grow to \$3000 in those 6 years. What interest rate will she need?

N =	FV =
I =	PY =
PV =	CY =
PMT =	BEGIN

H3. Becky invests \$5000 at 3.2% p.a. compounded quarterly. She needs \$8000 to buy a used car. How long will it take until she has enough money to purchase the car?

N =	FV =
=	PY =
PV =	CY =
PMT =	BEGIN

11. Tony deposited \$275 per month for 2 years. If the account pays 1.75% p.a. compounded quarterly, how much will he have?

FV =
PY =
CY =
BEGIN

12. Nicole invests \$3000 per year at 7.2% p.a. compounded semi-annually. How much will she have in 3 years?

N =	FV =
I =	PY =
PV =	CY =
PMT =	BEGIN

13. Samuel deposited a certain amount into his account every month. How much should he invest each month at 5% p.a. compounded annually in order to have \$10 000 in 4 years?

N =	FV =
I =	PY =
PV =	CY =
PMT =	BEGIN

J1. Gabriel invested \$7500 in a GIC for a 3 year term at 3.6% p.a. compounded semi-annually. At the end of the term, he transferred the money into a savings account that paid 2.4% p.a. compounded monthly. During the time, he was also making regular monthly payments of \$250 into a savings account that earned 3% p.a. compounded semi-annually. What was the total value of his investment after 5 years?

N =	N =	N =
l =	l =	=
PV =	PV =	PV =
PMT =	PMT =	PMT =
FV =	FV =	FV =
P/Y =	P/Y =	P/Y =
C/Y =	C/Y =	C/Y =
BEGIN	BEGIN	BEGIN

Fotal:	Total:	Total:

Total Value of the investment: ______