Simple and Compound Interest - Extra Practice

Name: Name: Block:

1. A bank is offering a simple interest rate of 3.5% for a GIC with a 3 year term. Reid invests \$1500 into the GIC. What is the future value at maturity?

$$A = 1500 + 1500(0.035)(3)$$

$$A = 31657.50$$

2. At 5% simple interest, how long would it take \$500 to grow to \$575?

$$575 = 500 + 500(0.05)t$$

 $75 = 25t$
 $[t = 3 \text{ years}]$

3. Cal wants to buy a car and hopes to save \$6400 in the next 5 years. How much should he invest now at 2.4% simple interest in order to reach his goal?

$$6400 = P(1+0.024(5))$$

$$6400 = P(1.12)$$

$$P = 5714.29$$

4. The Canada Savings Bonds issued one year earned 8.25% interest compounded annually. They matured in 7 years. Determine the future value of a \$500 bond.

$$A = 500(1+0.0825)^{7}$$

$$A = 870.89$$

5. Elise put \$2000 into an RRSP (Registered Retirement Savings Plan) earning 9.5% interest compounded semi-annually. Determine the future value after 7 years.

$$A = 2000(1 + \frac{0.095}{2})^{7\times2}$$

$$A = 3829.89$$

6. Pat puts \$5000 into a short-term deposit. She obtains a 1 year term at 6% compounded monthly. What is the future value of her investment?

$$A = 5000 \left(1 + \frac{0.06}{12}\right)^{12}$$

$$A = 5308.39$$

7. How much would you have to invest today at 4.5% interest in order to have \$2850 available after 3 years?

$$2850 = P(1+0.045)^{3}$$

$$2850 = P$$

$$(1+0.045)^{3}$$

$$P = 24477.45$$

8. Anna wants to invest money to accumulate \$8000 in 4 years when her son starts university. How much would she need to invest now at 6% compounded quarterly?

$$P = \frac{8000}{(1+0.015)^{16}} = \begin{bmatrix} 46304.25 \end{bmatrix}$$

- 9. A donor gave \$75000 to a town council. The money was to be invested for 10 years, and the accumulated amount used to expand the public library. Each member of the council found a different investment option. Which investment option will return the most money to spend on the library, and how much will it be?
 - a) 8.5% simple interest

$$A = 75000 (1 + 0.085 (10)) = |4|38750$$

b) 6.3% compounded annually

c) 6.25% compounded semi-annually

$$A = 75000(1 + 0.0625)^{20} = 4138784.35$$

d) 6.2% compounded quarterly

$$A = 75000 (1 + 0.062)^{40} = 4 138758.11$$

e) 6.1% compounded monthly

$$A = 75000(1 + 0.0615)^{120} = 4138506.54$$

f) 6% compounded daily

$$A = 75000 \left(1 + \frac{0.06}{365}\right)^{3650} = 4 \left[38025.32\right]$$