Master 4.1a Activate Prior Learning: Square Roots and Cube Roots

When a number x can be written as the product of two equal factors, then the square root of x, represented by \sqrt{x} , is one of these factors.

For example, $\sqrt{64} = 8$ because $8^2 = 64$.

The square root of a perfect square is always a rational number.

The cube root of a number x, represented by $\sqrt[3]{x}$, is one of three equal factors of the number. For example, $\sqrt[3]{64} = 4$ because $4^3 = 64$.

The cube root of a perfect cube is always a rational number.

You can use groupings of prime factors to calculate square roots of perfect squares and cube roots of perfect cubes.

$$\sqrt{256} = \sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}$$

$$= \sqrt{(2 \cdot 2 \cdot 2 \cdot 2) \cdot (2 \cdot 2 \cdot 2 \cdot 2)}$$

$$= \sqrt{(2 \cdot 2 \cdot 2 \cdot 2)^{2}}$$

$$= \sqrt{(2 \cdot 2 \cdot 2 \cdot 2)^{2}}$$

$$= 2 \cdot 2 \cdot 2 \cdot 2$$

$$= 16$$

$$\sqrt[3]{125} = \sqrt[3]{5 \cdot 5 \cdot 5}$$

$$= \sqrt[3]{5^{3}}$$

$$= 5$$

Check Your Understanding

1. Use mental math to calculate each root.

a)
$$\sqrt{36}$$

b)
$$\sqrt{144}$$

c)
$$\sqrt[3]{27}$$

2. Use mental math to calculate each root.

a)
$$\sqrt{3\cdot 3\cdot 3\cdot 3}$$

b)
$$\sqrt{2^{12}}$$

c)
$$\sqrt[3]{5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5}$$
 d) $\sqrt[3]{9^6}$

- 3. a) A square has an area of 196 cm². Calculate its side length.
 - b) A cube has a volume of 216 cm³. Calculate its edge length.
- **4.** Use a calculator to calculate each square root. Write the answer to 2 decimal places where necessary.

a)
$$\sqrt{289}$$

b)
$$\sqrt{3.24}$$

c)
$$\sqrt{1000}$$

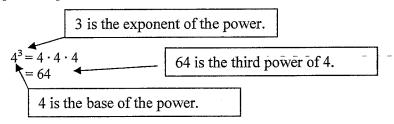
d)
$$\sqrt{\frac{3}{5}}$$

Master 4.1b Activate Prior Learning: Powers with Integer Bases

A **power** with a positive integer exponent represents repeated multiplication; for example, the power $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$.

A power has a base and an exponent.

The exponent represents the number of equal factors in a power.



You can use mental math to calculate powers such as 2^5 and a calculator to calculate powers such as $(-9)^5$.

Check Your Understanding

1. Write each expression as a power.

a)
$$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$$

c)
$$10 \cdot 10 \cdot 10 \cdot 10$$

2. Write each power as repeated multiplication.

a)
$$7^6$$

b)
$$(-17)^5$$

c)
$$100^3$$

3. Use mental math to calculate each power.

a)
$$3^3$$

$$(-5)^2$$

d)
$$(-4)^3$$

4. Use a calculator to calculate each power.

a)
$$13^5$$

c)
$$(-24)^4$$

d)
$$(-8)^9$$

5. A shelf contains 8 boxes. Each box contains 8 cartons.

Each carton contains 8 pens. Write the number of pens as a power.

How many pens are on the shelf?

Master 4.1c **Activate Prior Learning: Exponent Laws**

Product of powers law

$$a^m \cdot a^n = a^{m+n}$$

When the bases of the powers are the same, add the exponents.

$$2^{3} \cdot 2^{4} = 2^{3+4}$$
$$= 2^{7}$$

Quotient of powers law

$$\frac{a^m}{a^n} = a_-^{m-n}$$

When the bases of the powers are the same, subtract the exponents.

$$\frac{3^9}{3^5} = 3^{9-5}$$
$$= 3^4$$

Power of a power law

$$(a^m)^n = a^{mn}$$

Multiply the exponents.

$$(4^2)^5 = 4^{2 \cdot 5}$$
$$= 4^{10}$$

Check Your Understanding

1. Write as a single power.

a)
$$3^2 \cdot 3^5$$

b)
$$(-4)^7(-4)$$

b)
$$(-4)^7 (-4)^6$$
 c) $(-5)^{10} \div (-5)^8$ **d)** $\frac{2^{12}}{2^7}$

d)
$$\frac{2^{12}}{2^7}$$

2. Write as a single power.

a)
$$(4^2)^5$$

b)
$$\left[(-3)^4 \right]^3$$

c)
$$[(-5)^2]$$

c)
$$[(-5)^2]^4$$
 d) $[(-4)^3]^5$

- 3. Why can you not use the exponent laws to calculate $2^6 \cdot 3^4$?
- **4.** How do you know that $(4^2)^3 = (4^3)^2$?