Name: _____

Block: ____

A trigonometric identity is a statement that relates trig ratios, and is true for all values of the variable for which the trig ratios are defined.

e.g. $\sin\theta\csc\theta=1$ is an identity because it is true for all values of θ (except where $\csc\theta$ is undefined) $\sin\theta \sec\theta = 1$ is not an identity because it is only true for $\theta = \frac{\pi}{4}, \frac{5\pi}{4}$.

A trig identity can be **verified** by substituting a value for the variable. This shows that an identity is true for specific values, but does not prove the identity is true for all values.

To **prove** an identity is true, it must be shown that one side of the equation is equal to the other, or that both sides are equal to the same expression.

Reciprocal Identities:

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sec\theta = \frac{1}{\cos\theta}$$

$$\csc\theta = \frac{1}{\sin\theta} \qquad \sec\theta = \frac{1}{\cos\theta} \qquad \cot\theta = \frac{1}{\tan\theta} \qquad \frac{\text{Proof}}{\sin\theta}$$

$$\sin \theta = \frac{opp}{hyp}$$

Quotient Identities:

$$\tan\theta = \frac{\sin\theta}{\cos\theta} \star \cot\theta = \frac{\cos\theta}{\sin\theta}$$

$$\cot\theta = \frac{\cos\theta}{\sin\theta}$$

1. Given the identity $\sin\theta \cot\theta = \cos\theta$

a) Verify the identity for $\theta = \frac{\pi}{6}$. Sin $\frac{\pi}{6}$ cot $\frac{\pi}{6} = \cos \frac{\pi}{6}$

$$\sin \frac{\pi}{6} \cdot \cot \frac{\pi}{6} = \cos \frac{\pi}{6}$$

$$\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{4}\right) = \frac{\sqrt{3}}{2}$$

$$\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

b) Prove the identity. LS RS
$$\frac{\cos \theta}{\sin \theta} = \cos \theta$$

- coso coso
- choose themore complicated side to simplify. - change coto to coso
- simplify
- re-write

c) What are the non-permissible values of θ ?

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

2. Prove the identity
$$\frac{\tan \theta}{\sec \theta} = \sin \theta$$
. What are the non-permissible values of θ ?

$$\frac{\tan \theta}{\sec \theta} = \frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\cos \theta} = 0$$

$$= \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{\cos \theta}$$

$$= \frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{\cos \theta}$$

$$= \sin \theta$$

$$= \sin$$

3. Prove the identity
$$\cos \theta = \frac{1 + \cos \theta}{1 + \sec \theta}$$
.

4. Solve each equation for $0 \le x < 2\pi$.

a)
$$2\sin x = 3 + 2\csc x$$

$$\left(2\sin x = 3 + \frac{2}{\sin x}\right) \cdot \sin x$$

$$\sin x = -\frac{1}{2}$$
 $\sin x$

b)
$$\frac{\sin x}{\cos x} = \frac{\cos x}{\cos x}$$

$$\chi = \frac{\pi}{4}, \frac{5\pi}{4}$$

-1 17/6

$$X = \frac{711}{6}$$
, 1111