3.7 – Applications of Sinusoidal Functions

Name:_____ Block: ____

In lessons 6.4-6.6, the scale on the horizontal axis of a sinusoidal graph was in terms of π . When sinusoidal graphs are used in applications, the horizontal axis usually represents time, and the axis is labelled with whole numbers.

e.g. The period of
$$y = \sin 3x$$
 is $2\pi \left(\frac{1}{3}\right) = \frac{2\pi}{3}$
The period of $y = \sin \frac{2\pi}{3}x$ is $2\pi \left(\frac{3}{2\pi}\right) = 3$

Ex. 1. Sketch the graph of $y = 3\sin \pi (x-1) + 2$.

Amplitude: 3

Centre line: 2

Maximum: __5___

Minimum:

Period: $\frac{211}{11} = 2$

Phase Shift: right 1

Ex. 2. A Ferris wheel has a radius of 30m. Passengers get on at the lowest point of the wheel, which is 1m above the ground, at t=0. The wheel rotates once every 40s.

a) Sketch a graph to represent the height of a rider over the first 2 turns.

b) Write an equation to represent the height of a rider, h metres, at time t seconds.

- Ex. 3. On a typical day at an ocean port, the water has a maximum depth of 15 m at 7:00am. The minimum depth of 2 m occurs at 1:12 pm. Assume that the relation between depth of water and time is a sinusoidal function.
 - a) Sketch a graph to represent the depth of water over the first 24 hours.

b) Write an equation to represent the depth of water, h metres, at time t hours.

$$h = 6.5 \cos \frac{2\pi}{12.4} (t-7) + 8.5$$

c) Determine the depth of the water at 10:00 am.

$$h = 6.5 \cos 2\pi (10-7) + 8.5$$

$$h = 6.5 \cos \left(\frac{2\pi}{12.4}(3)\right) + 8.5$$

$$h = 8.83 \text{ m}$$

p. 548 # 3-9a, MC # 1, 2