Lesson 8.5 Exercises, pages 575-580

Exercises

A
3. Identify the indicated characteristic of each function.
a) amplitude of $y=5 \sin x$
The amplitude is 5 .
b) amplitude of $y=2 \cos x$
The amplitude is 2 .
e) phase shift of $y=\sin \left(x-\frac{\pi}{7}\right)$
c) period of $y=\sin 10 x$
The period is: $\frac{2 \pi}{10}=\frac{\pi}{5}$
d) period of $y=\tan 4 x$

The period is: $\frac{\pi}{4}$

The phase shift is: $\frac{\pi}{7}$
f) phase shift of $y=\cos \left(x+\frac{\pi}{12}\right)$

The phase shift is: $-\frac{\pi}{12}$

B
4. For each function below, sketch the graph for $-\pi \leq x \leq \pi$, then identify each characteristic:
i) amplitude
ii) period
iii) zeros
v) domain of the function
iv) equations of any asymptotes
vi) range of the function
a) $y=\cos x$

i) The amplitude is 1.
ii) The period is 2π.
iii) The zeros are $\pm \frac{\pi}{2}$.
iv) There are no asymptotes.
v) The domain is $x \in \mathbb{R}$.
vi) The range is $-1 \leq y \leq 1$.
b) $y=\sin x$

i) The amplitude is 1 .
ii) The period is 2π.
iii) The zeros are $0, \pm \pi$.
iv) There are no asymptotes.
v) The domain is $x \in \mathbb{R}$.
vi) The range is $-1 \leq y \leq 1$.
c) $y=\tan x$

i) There is no amplitude.
ii) The period is π.
iii) The zeros are $0, \pm \pi$.
iv) The asymptotes are $x= \pm \frac{\pi}{2}$.
v) The domain is $x \neq \pm \frac{\pi}{2}$.
vi) The range is $y \in \mathbb{R}$.
5. Does this graph represent a periodic function? Explain.

No, the graph does not represent a periodic function because the graph does not repeat in regular intervals.
6. Use technology.
a) i) Graph each function.

$$
y=2 \cos x \quad y=-3 \cos x \quad y=\frac{1}{3} \cos x
$$

ii) How does varying the value of a affect the graph of $y=a \cos x$?

When $a=1$, the graph is $y=\cos x$ with amplitude 1 . As a varies, the amplitude varies. When $a>1$, the graph of $y=\cos x$ is stretched vertically by a factor of a and the amplitude increases; when $0<a<1$, the graph of $y=\cos x$ is compressed vertically by a factor of a and the amplitude decreases; when $a<0$, the graph is also reflected in the x-axis.
b) i) Graph each function.
$y=\sin 3 x \quad y=\sin (-4 x) \quad y=\sin \frac{3}{4} x$
ii) How does varying the value of b affect the graph of $y=\sin b x$? When $b=1$, the graph is $y=\sin x$ and its period is 2π. As b varies, the period of the graph varies. When $b>1$, the graph of $y=\sin x$ is compressed horizontally by a factor of $\frac{1}{b}$ and the period decreases; when $0<b<1$, the graph of $y=\sin x$ is stretched horizontally by a factor of $\frac{1}{b}$ and the period increases; when $b<0$, the graph is also reflected in the y-axis.
c) i) Graph each function.
$y=\cos \left(x-\frac{\pi}{6}\right) \quad y=\cos \left(x-\frac{\pi}{4}\right) \quad y=\cos \left(x+\frac{\pi}{3}\right)$
ii) How does varying the value of c affect the graph of
$y=\cos (x-c)$?
When $c=1$, the graph is $y=\cos x$ with phase shift 0 . As c varies, the phase shift varies. When $c>0$, the graph of $y=\cos x$ is translated c units right; when $c<0$, the graph is translated c units left.
d) i) Graph each function.
$y=\sin x+1 \quad y=\sin x-2 \quad y=\sin x+0.5$
ii) How does varying the value of d affect the graph of
$y=\sin x+d$?
When $d=0$, the graph is $y=\sin x$. As d varies, the graph of $y=\sin x$ is translated vertically. When $d>0$, the graph is translated d units up; when $d<0$, the graph is translated d units down.
7. Sketch the graph of each function. Describe your strategy.
a) $y=\cos x+1$

I used the completed table of values for $y=\cos x$ from Lesson 8.4, translated each point 1 unit up, extended the pattern, then drew a smooth curve through the points.
b) $y=\sin 2 x$

I used the completed table of values for $y=\sin x$ from Lesson 8.4, halved each x-coordinate, extended the pattern, then drew a smooth curve through the points.
c) $y=\cos \left(x-\frac{\pi}{3}\right)$

I used the completed table of values for $y=\cos x$ from Lesson 8.4, translated each point $\frac{\pi}{3}$ units right, extended the pattern, then drew a smooth curve through the points.
d) $y=2 \sin x$

I used the completed table of values for $y=\sin x$ from Lesson 8.4, doubled each y-coordinate, extended the pattern, then drew a smooth curve through the points.

RM,
8. Use technology to graph $y=\sin \left(x+\frac{\pi}{2}\right)$ and $y=\cos x$. Explain the result.

The graphs coincide. The graph of $y=\cos x$ is the image of the graph of $y=\sin x$ after a horizontal translation of $\frac{\pi}{2}$ units left; that is, for any angle x radians, $\cos x=\sin \left(x+\frac{\pi}{2}\right)$.

RM,
9. A student says that the amplitude of this sinusoidal function is 5 . Is the student correct? Explain.

No, the amplitude is one-half of the vertical distance between a maximum point and a minimum point, which is 2.

C
RM, 10. Use technology. Graph the function $y=\sin x+\cos x$.
CR1 Is it periodic? Explain. Is it sinusoidal? Explain.

The function is periodic because its values repeat at regular intervals. The function is sinusoidal because its maximum and minimum values are equidistant from the centre line.

