Lesson 8.5 Exercises, pages 575–580

Exercises

Α

3. Identify the indicated characteristic of each function.

a) amplitude of
$$y = 5 \sin x$$
 b) amplitude of $y = 2 \cos x$ c) period of $y = \sin 10x$
The amplitude is 5. The amplitude is 2. The period is: $\frac{2\pi}{10} = \frac{\pi}{5}$

d) period of
$$y = \tan 4x$$

e) phase shift of $y = \sin\left(x - \frac{\pi}{7}\right)$
f) phase shift of $y = \cos\left(x + \frac{\pi}{12}\right)$
The period is: $\frac{\pi}{4}$
The phase shift is: $\frac{\pi}{7}$
The phase shift is: $-\frac{\pi}{12}$

4. For each function below, sketch the graph for $-\pi \le x \le \pi$, then identify each characteristic:

> iv) equations of any asymptotes vi) range of the function

a) $\gamma = \cos x$

В

b) $\gamma = \sin x$

iv) There are no asymptotes. v) The domain is $x \in \mathbb{R}$. vi) The range is $-1 \le y \le 1$.

i) The amplitude is 1. ii) The period is 2π . iii) The zeros are 0, $\pm \pi$. iv) There are no asymptotes. v) The domain is $x \in \mathbb{R}$. vi) The range is $-1 \le y \le 1$.

c) $y = \tan x$

5. Does this graph represent a periodic function? Explain.

No, the graph does not represent a periodic function because the graph does not repeat in regular intervals.

i) amplitude ii) period iii) zeros **v)** domain of the function

6. Use technology.

a) i) Graph each function.

 $y = 2 \cos x$ $y = -3 \cos x$ $y = \frac{1}{3} \cos x$

ii) How does varying the value of *a* affect the graph of $y = a \cos x$?

When a = 1, the graph is $y = \cos x$ with amplitude 1. As a varies, the amplitude varies. When a > 1, the graph of $y = \cos x$ is stretched vertically by a factor of a and the amplitude increases; when 0 < a < 1, the graph of $y = \cos x$ is compressed vertically by a factor of a and the amplitude decreases; when a < 0, the graph is also reflected in the x-axis.

b) i) Graph each function.

 $y = \sin 3x$ $y = \sin (-4x)$ $y = \sin \frac{3}{4}x$

ii) How does varying the value of *b* affect the graph of $y = \sin bx$?

When b = 1, the graph is $y = \sin x$ and its period is 2π . As b varies, the period of the graph varies. When b > 1, the graph of $y = \sin x$ is compressed horizontally by a factor of $\frac{1}{b}$ and the period decreases; when 0 < b < 1, the graph of $y = \sin x$ is stretched horizontally by a factor of $\frac{1}{b}$ and the period increases; when b < 0, the graph is also reflected in the *y*-axis.

c) i) Graph each function.

$$y = \cos\left(x - \frac{\pi}{6}\right)$$
 $y = \cos\left(x - \frac{\pi}{4}\right)$ $y = \cos\left(x + \frac{\pi}{3}\right)$

ii) How does varying the value of *c* affect the graph of $y = \cos (x - c)$?

When c = 1, the graph is $y = \cos x$ with phase shift 0. As c varies, the phase shift varies. When c > 0, the graph of $y = \cos x$ is translated c units right; when c < 0, the graph is translated c units left.

d) i) Graph each function.

 $y = \sin x + 1$ $y = \sin x - 2$ $y = \sin x + 0.5$

ii) How does varying the value of *d* affect the graph of $y = \sin x + d$?

When d = 0, the graph is $y = \sin x$. As d varies, the graph of $y = \sin x$ is translated vertically. When d > 0, the graph is translated d units up; when d < 0, the graph is translated d units down.

RM, US, CR1

7. Sketch the graph of each function. Describe your strategy.

I used the completed table of values for $y = \cos x$ from Lesson 8.4, translated each point 1 unit up, extended the pattern, then drew a smooth curve through the points.

b) $y = \sin 2x$

I used the completed table of values for $y = \sin x$ from Lesson 8.4, halved each x-coordinate, extended the pattern, then drew a smooth curve through the points.

I used the completed table of values for $y = \cos x$ from Lesson 8.4, translated each point $\frac{\pi}{3}$ units right, extended the pattern, then drew a smooth curve through the points.

I used the completed table of values for $y = \sin x$ from Lesson 8.4, doubled each *y*-coordinate, extended the pattern, then drew a smooth curve through the points.

RM, **B.** Use technology to graph
$$y = \sin\left(x + \frac{\pi}{2}\right)$$
 and $y = \cos x$. Explain the result.

The graphs coincide. The graph of $y = \cos x$ is the image of the graph of $y = \sin x$ after a horizontal translation of $\frac{\pi}{2}$ units left; that is, for any angle x radians, $\cos x = \sin \left(x + \frac{\pi}{2}\right)$.

RM, 9. A student says that the amplitude of this sinusoidal function is 5.CR1, Is the student correct? Explain.

No, the amplitude is one-half of the vertical distance between a maximum point and a minimum point, which is 2.

С

- **RM**, **10.** Use technology. Graph the function $y = \sin x + \cos x$.
- **CR1** Is it periodic? Explain. Is it sinusoidal? Explain.

The function is periodic because its values repeat at regular intervals. The function is sinusoidal because its maximum and minimum values are equidistant from the centre line.