A1) Sketch the angle $\theta=230^{\circ}$ in standard position.

B1) Determine the measure of the angles that are coterminal with the angle $\theta=230^{\circ}$ in the domain $-500 \leq \theta \leq 500$. Write an expression for all angles that are coterminal with θ (in the domain $\theta \in \mathbb{Z}$).

C1) Determine the value of $\csc 425^{\circ}$ to 3 decimal places.

A2) Sketch the angle $\theta=-420^{\circ}$ in standard position.

B2) Determine the measure of the angles that are coterminal with the angle $\theta=-420^{\circ}$ in the domain $-800 \leq \theta \leq 800$. Write an expression for all angles that are coterminal with θ (in the domain $\theta \in \mathbb{Z}$).

C2) Determine the value of $\sec -140^{\circ}$ to 3 decimal places.

D1) Determine the exact value of $\sin 210^{\circ}$.

E1) If the terminal arm of θ passes through point $P(3,-2)$, determine the exact values of the six trig ratios.

F1) If θ is in the $4^{\text {th }}$ quadrant and $\cos \theta=\frac{\sqrt{11}}{6}$, determine the exact value of $\sin \theta$.

G1) Given the information in question F1 above, determine all possible values of θ in the domain $-360^{\circ} \leq \theta \leq 360^{\circ}$ to the nearest degree.

C2) Determine the value of $\sin 4.5$ to 3 decimal places.

D2) Determine the exact value of $\tan 315^{\circ}$.

E2) If the terminal arm of θ passes through point $\mathrm{P}(-5,12)$, determine the exact values of the six trig ratios.

F2) If θ is in the $3^{\text {rd }}$ quadrant and $\tan \theta=\frac{2}{5}$, determine the exact value of $\cos \theta$.

G2) Given the information in question F1 above, determine all possible values of θ in the domain $-360^{\circ} \leq \theta \leq 360^{\circ}$ to the nearest degree.

H1) Determine the length of the arc that subtends an angle of 5 radians at the centre of a circle with radius 8 cm .

I1) Convert 150° to exact radians.
J1) Sketch the angle $\theta=\frac{5 \pi}{4}$ in standard position.

K1) Determine the measure of two angles that are coterminal with the angle $\theta=\frac{5 \pi}{4}$.
Write an expression for all angles that are coterminal with θ (in the domain $\theta \in \mathbb{Z}$).

H2) Determine the central angle, in radians and nearest degree, of a circle with radius 4 cm and arc length of 12 cm .

I2) Convert $\theta=\frac{2 \pi}{3}$ to degrees.
J2) Sketch the angle $\theta=-\frac{7 \pi}{6}$ in standard position.

K2) Determine the measure of the angles that are coterminal with the angle $\theta=-\frac{7 \pi}{6}$ in the domain $-4 \pi \leq \theta \leq 4 \pi$. Write an expression for all angles that are coterminal with θ (in the domain $\theta \in \mathbb{Z}$).

L1) Determine the exact value of $\sin \frac{8 \pi}{3}$.

G3) If θ is in the $2^{\text {nd }}$ quadrant and $\sin \theta=\frac{3}{5}$, determine all possible values of θ in the domain $-2 \pi \leq \theta \leq 2 \pi$ to one decimal place.

