A1.Convert $e^{d}=f$ to logarithmic form.

B1. Evaluate (without a calculator) $\log _{3} 81$.

C1. Use benchmarks to estimate $\log _{2} 20$ to the nearest tenth.

A2. Convert $\log _{5}(7 y)=x$ to exponential form.

B2. Evaluate (without a calculator) $\log _{5}\left(\frac{1}{25}\right)$.

C2. Use benchmarks to estimate $\log _{3} 35$ to the nearest tenth.

D1A. Write the expression $\operatorname{ylog}_{\mathrm{a}} \mathrm{b}-\log _{\mathrm{a}} \mathrm{c}^{3}+\log _{\mathrm{a}} \mathrm{d}$ as a single logarithm.

D1B. Write the expression $\log \left(\frac{a^{\frac{1}{4}}}{b^{2} c^{3}}\right)$ in terms of $\log a, \log b$, and $\log c$.

D1C. Evaluate the expression $2 \log _{4} 6-3 \log _{4} 3+\log _{4} 12$ without a calculator.

D2A. Write the expression $5 \log _{5} 2+2$ as a single logarithm.

D2B. Write the expression $\log \left(\frac{a^{3} b^{2}}{c^{1 / 3}}\right)$ in terms of $\log a, \log b$, and $\log c$.

D2C. Evaluate the expression $2 \log _{2} 6-3 \log _{2} 3+\log _{2} 6$ without a calculator.

F1. Sketch the graph of $\mathrm{y}=2 \log _{2} \mathrm{x}+2$

G1. Identify the domain, range, vertical asymptote, and intercepts of $\mathrm{y}=2 \log _{2} \mathrm{x}+2$.

E1. Determine the value of $\log _{7} 90$ to 3 decimal places.

F2. Sketch the graph of $y=3 \log _{3}(x+3)$.

G2. Identify the domain, range, vertical asymptote, and intercepts of $\mathrm{y}=3 \log _{3}(\mathrm{x}+3)$

H1. Solve the equation to 3 decimal places: $3^{x}=5^{x-2}$

E2. Determine the value of $\log _{3} 68$ to 3 decimal places.
$H 2$. Solve the equation to 3 decimal places: $2\left(5^{x}\right)=7^{x+3}$

I1. Solve and verify: $\log _{4}(x-1)+\log _{4}(x+2)=1$
12. Solve and verify: $\log (2 x+3)+\log (x-1)=\log (x-2)+\log (x-1)$

J1a. A ninja invests $\$ 2500$ at 3% compounded semi-annually. How much money will the ninja have after 5 years?

J1b. How long would it take for the same investment to double in value? (Note: This is a NINJA's investment).

J2. The half-life of Sodium-24 is 14.9 hours. Suppose a hospital buys a 50 mg sample. How long will it be until only 5 mg remain?

K1. How many times as intense is an earthquake with magnitude 5.0 compared to an earthquake with magnitude 7.0.

K2. How many times louder is a car horn (110 dB) compared to city traffic (80 dB)

L1. A major earthquake of magnitude 8.2 is 110 times as intense as a minor earthquake. What is the magnitude of the minor earthquake?

J2. The population of a town is decreasing at a rate of 10% every 5 years. If there are currently 20,000 people in the town, how long until only half remain?

K1. How many times as acidic is a solution with pH 4.2 compared to a solution with pH 5.8 ?

L2. Solution X has a pH of 9.2. Solution Y is 20 times more alkaline than solution X . What is the pH of solution Y ?

M1. Solve the equation to 3 decimal places: $2 e^{0.04 x}=30$

M2. Solve and verify: $\ln x+\ln (x-1)=\ln 6$

