A1.Convert $\,e^{\rm d}\,{=}\,f\,$ to logarithmic form.

- B1. Evaluate (without a calculator) $\log_{3}\!81$.
- C1. Use benchmarks to estimate $\log_2\!20$ to the nearest tenth.

A2. Convert $\log_{\,_{5}}\!\big(7y\big)\!=\!x\,$ to exponential form.

B2. Evaluate (without a calculator)
$$\log_5\left(\frac{1}{25}\right)$$
.

C2. Use benchmarks to estimate $\log_{3}\!35\,$ to the nearest tenth.

D1A. Write the expression $\,y log_a b - log_a c^3 + log_a d\,$ as a single logarithm.

D1B. Write the expression
$$\log\left(\frac{\mathrm{a}^{\frac{1}{4}}}{\mathrm{b}^2\mathrm{c}^3}\right)$$
 in terms of log a , log b , and log c .

D1C. Evaluate the expression $2{\rm log}_46$ - $3{\rm log}_43+{\rm log}_412$ without a calculator.

D2A. Write the expression $5 {\rm log}_5 2 + 2\,$ as a single logarithm.

D2B. Write the expression $\log\left(\frac{a^3b^2}{c^{\frac{1}{3}}}\right)$ in terms of $\log a$, $\log b$, and $\log c$.

D2C. Evaluate the expression $2{\log_2}6$ - $3{\log_2}3+{\log_2}6$ without a calculator.

F1. Sketch the graph of $\,y\!=\!2{\log_2}x\!+\!2$

G1. Identify the domain, range, vertical asymptote, and intercepts of $\,y\,{=}\,2{\log_2}x\,{+}\,2\,.$

E1. Determine the value of $\,\log_7\!90\,$ to 3 decimal places.

F2. Sketch the graph of $\,y\,{=}\,3{\log_3}(x\,{+}\,3)\,.$

G2. Identify the domain, range, vertical asymptote, and intercepts of $\,y=3{\rm log}_3(x+3)$

H1. Solve the equation to 3 decimal places: $3^{\rm x} = 5^{\rm x-2}$

E2. Determine the value of $\log_3\!68\,$ to 3 decimal places.

H2. Solve the equation to 3 decimal places: $2(5^x) = 7^{x+3}$

I1. Solve and verify: $\log_4(x-1) + \log_4(x+2) = 1$

I2. Solve and verify: $\log(2x+3) + \log(x-1) = \log(x-2) + \log(x-1)$

J1a. A ninja invests \$2500 at 3% compounded semi-annually. How much money will the ninja have after 5 years?

J1b. How long would it take for the same investment to double in value? (Note: This is a NINJA's investment).

J2. The half-life of Sodium-24 is 14.9 hours. Suppose a hospital buys a 50 mg sample. How long will it be until only 5 mg remain?

K1. How many times as intense is an earthquake with magnitude 5.0 compared to an earthquake with magnitude 7.0.

K2. How many times louder is a car horn (110 dB) compared to city traffic (80 dB)

L1. A major earthquake of magnitude 8.2 is 110 times as intense as a minor earthquake. What is the magnitude of the minor earthquake?

J2. The population of a town is decreasing at a rate of 10% every 5 years. If there are currently 20,000 people in the town, how long until only half remain?

K1. How many times as acidic is a solution with pH 4.2 compared to a solution with pH 5.8?

L2. Solution X has a pH of 9.2. Solution Y is 20 times more alkaline than solution X. What is the pH of solution Y?

M1. Solve the equation to 3 decimal places: $2e^{0.04x} = 30$

M2. Solve and verify: lnx + ln(x-1) = ln6