PreCalculus 12 - Homework Quiz Questions (Chapter 1)

A1. Use long division to divide $2 \mathrm{x}^{3}-\mathrm{x}^{2}-13 \mathrm{x}-6$ by $\mathrm{x}-6$. Write the division statement.

B1. Use synthetic division to divide $\mathrm{x}^{5}-4 \mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}+6$ by $\mathrm{x}+3$. Write the division statement.

A2. Use long division to divide $\mathrm{x}^{4}+3 \mathrm{x}^{3}-\mathrm{x}+8$ by $\mathrm{x}+2$. Write the division statement.

B2. Use synthetic division to divide $2 \mathrm{x}^{4}-\mathrm{x}^{3}-55 \mathrm{x}^{2}+126 \mathrm{x}-72$ by $\mathrm{x}-4$. Write the division statement.

C1. Use the Remainder Theorem to determine the remainder when $-3 \mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}-7$ is divided by $(x+2)$.

D1. Use the Factor Theorem to determine one factor of the polynomial $2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-5 \mathrm{x}+12$.

E1. Factor $2 \mathrm{x}^{3}-\mathrm{x}^{2}-11 \mathrm{x}+10$ completely.

A3. Use long division to divide $2 \mathrm{x}^{3}-3 \mathrm{x}^{2}-8 \mathrm{x}+15$ by $\mathrm{x}-1$. Write the division statement.

B3. Use synthetic division to divide $3 \mathrm{x}^{3}-7 \mathrm{x}-9$ by $\mathrm{x}-2$. Write the division statement.

C2. Use the Remainder Theorem to determine the remainder when $2 \mathrm{x}^{4}-\mathrm{x}^{3}-2 \mathrm{x}^{2}+3$ is divided by $(x-3)$.

D2. Use the Factor Theorem to determine one factor of the polynomial $4 x^{3}-16 x^{2}-x+4$.

E2. Factor $\mathrm{x}^{4}+\mathrm{x}^{3}-7 \mathrm{x}^{2}-\mathrm{x}+6$ completely.

F1. State the degree, type (e.g. linear), leading coefficient, and y-int. of $y=3 x^{3}-4 x^{2}+x-5$.

G1. Sketch the graph of the function $y=x^{4}-5 x^{3}+5 x^{2}+5 x-6$ using a table of values.

F2. State the degree, type, leading coefficient, and y-int. of $y=4 x^{2}-x^{4}+2 x^{3}+x+3$.

G2. Sketch the graph of the function $y=-x^{4}-5 x^{3}-5 x^{2}+5 x+6$ using a table of values.

H1. Using the zeros and y-intercept, sketch the graph of $y=x^{3}-2 x^{2}-5 x+6$.

I1. Determine the zeros of $y=(x-1)(x+1)^{2}(x-3)$. State the multiplicity of each zero and sketch a graph to show the behaviour at those points.

